Pochodne funkcji elementarnych
Funkcja |
Pochodna funkcji |
Uwagi o funkcji |
| | |
y = c |
y' = 0 |
c∈R |
y = xα |
y' = αxα-1 |
α∈R (x zależne od α) |
y =
|
y' =
|
x∈R\{0} |
y =
|
y' =
|
x∈R+∪{0} |
y = ax |
y' = axlna |
x∈R, a∈R+ |
y = ex |
y' = ex |
x∈R |
y = logax |
y' =
logae =
|
x∈R+, a∈R+\{1} |
y = lnx |
y' =
|
x∈R+ |
y = sinx |
y' = cosx |
x∈R |
y = cosx |
y' = -sinx |
x∈R |
y = tgx |
y' =
|
x∈R,
x≠
π + kπ, k∈C
|
y = ctgx |
y' =
|
x∈R,
x≠kπ, k∈C |
y = arcsinx |
y' =
|
x∈(-1, 1) |
y = arccosx |
y' =
|
x∈(-1, 1) |
y = arctgx |
y' =
|
x∈R |
y = arcctgx |
y' =
|
x∈R |