Twierdzenia - NWD
Dla dowolnych różnych od zera liczb całkowitych a, b istnieje ich największy wspólny dzielnik
Rozważmy zbiór:
Ω = { d ∈ N:
d dzieli a i d dzieli b}
Jest to zbiór niepusty, bo 1 ∈ Ω. Jest to również zbiór
skończony, gdyż dowolny element d ∈ Ω jest mniejszy lub równy
zarówno od a, jak również od b. Niepusty i skończony zbiór złożony
z liczb naturalnych posiada oczywiście element największy, który jest poszukiwanym
największym wspólnym dzielnikiem liczb a i b.