logowanie


matematyka » zadania » zbiór zadań » zadania

Zbiór zadań, kombinacje

Powrót do kategorii | Schowek


Zadanie 1 Rozwiązanie
Iloma sposobami można rozdzielić cztery jednoosobowe zaproszenia między dziesięć osób?

Zadanie 2 Rozwiązanie
Oblicz liczbę przekątnych n-kąta wypukłego.

Zadanie 3 Rozwiązanie
Trener siatkarzy ma do dyspozycji dziesięcioosobową grupę treningową. Na ile sposobów może wybrać sześcioosobową drużynę?

Zadanie 4 Rozwiązanie
Spotyka się ośmiu kolegów. Ile nastąpi powitań?

Zadanie 5 Rozwiązanie
Ile prostych jest wyznaczonych przez dziesięć punktów, z których żadne trzy nie są współliniowe?

Zadanie 6 Rozwiązanie
Na ile sposobów można wybrać cztery karty z talii pięćdziesięciu dwóch kart?

Zadanie 7 Rozwiązanie
W pudełku znajduje się dziesięć żarówek, w tym dwie wadliwe. Wybieramy losowo bez zwracania trzy żarówki. Ile istnieje sposobów wylosowania samych żarówek dobrych?

Zadanie 8 Rozwiązanie
Z talii pięćdziesięciu dwóch kart losujemy bez zwracania trzynaście kart. Ile istnieje możliwych wyników losowania, w których wylosujemy dwa asy?

Zadanie 9 Rozwiązanie
W szufladzie znajduje się 12 żarówek, w tym trzy wadliwe. Losujemy bez zwracania pięć żarówek. Ile istnieje sposobów wylosowania jednej żarówki wadliwej?

Zadanie 10 Rozwiązanie
Na ile sposobów brydżysta może otrzymać: cztery piki, trzy kiery, jedno karo i pięć trefli?

Zadanie 11 Rozwiązanie

Ile jest dróg o długości 11 prowadzących z punktu A(0,0) do punktu B(6,5)?

Zadanie 12 Rozwiązanie
W klasie jest 13 dziewcząt i 15 chłopców. Na ile sposobów można wybrać dwuosobową delegację, w której będzie tylko jedna dziewczynka.

Zadanie 13 Rozwiązanie
Mamy grupę złożoną z 10 uczniów i nauczyciela. Na ile sposobów można spośród nich wybrać komisję 5-osobową złożoną z 4 uczniów i nauczyciela?

Zadanie 14 Rozwiązanie
Ile płaszczyzn wyznacza 8 punktów, z których żadne cztery nie należą do jednej płaszczyzny?

Zadanie 15 Rozwiązanie
W pojemniku znajduje się 6 kul białych i 6 kul czarnych. Kule białe i czarne są ponumerowane od 1 do 6. Na ile różnych sposobów można wyjąć z pojemnika dwie kule tak, aby każda miała inny numer?

Zadanie 16 Rozwiązanie
Ile co najmniej zamków trzeba założyć do skarbca, aby przy pewnym rozkładzie kluczy z 11-osobowej komisji upoważnionej do otwierania skarbca każdych 6 członków mogło go otworzyć, ale żadnych 5 nie mogło?

Zadanie 17 Rozwiązanie
Iloma sposobami ze zbioru liczb od 1 do 30 można wybrać takie trzy liczby, aby ich suma była podzielna przez 3?

Zadanie 18 Rozwiązanie
Na okręgu zaznaczono pewną liczbę punktów. Z punktów tych można utworzyć 220 różnych trójkątów. Ile punktów zaznaczono na okręgu?

Zadanie 19 Rozwiązanie
Ile jest par przekątnych rozłącznych w 10-kącie wypukłym?

Zadanie 20 Rozwiązanie
Święty Mikołaj ma pięć różnych prezentów. Na ile sposobów może obdarować troje dzieci wszystkimi prezentami pod warunkiem, że każde dziecko otrzyma co najmniej jeden prezent?

strony: 1 2


© 2024 math.edu.pl      kontakt