Ciągi, zadanie nr 3007
ostatnie wiadomości | regulamin | latex
Autor | Zadanie / Rozwiązanie |
magda199 postów: 12 | 2013-06-12 19:35:06 |
abcdefgh postów: 1255 | 2013-06-12 20:43:51 a) $a_{1}=3-2=1$ $a_{3}=3-6=-3$ $a_{4}=3-8=-5$ $a_{2k+1}=3-4k-2=1-4k$ b) $b_{1}=2$ $b_{3}=\frac{4*5}{3}=\frac{20}{3}=6\frac{2}{3}$ $b_{4}=\frac{5*7}{4}=\frac{35}{4}=8\frac{3}{4}$ $b_{2k+1}=\frac{(2k+2)(4k+1)}{2k+1}=\frac{8k^2+10k+2}{2k+1}$ c) $c_{1}=5*2^1=10$ $c_{3}=5*2^3=5*8=40$ $c_{4}=5*2^4=5*16=80$ $c_{2k+1}=5*2^{2k+1}$ |
strony: 1 |
Prawo do pisania przysługuje tylko zalogowanym użytkownikom. Zaloguj się lub zarejestruj