logowanie

matematyka » forum » forum zadaniowe - szkoła ponadpodstawowa » zadanie

Ciągi, zadanie nr 4875

ostatnie wiadomości  |  regulamin  |  latex

AutorZadanie / Rozwiązanie

fazi
postów: 26
2015-01-08 11:29:51




irena
postów: 2636
2015-01-08 11:42:45


$a_n=\frac{2+4+6+...+2n}{n^2}$

$2+4+6+...+2n=\frac{2+n}{2}\cdot n=\frac{2n+n^2}{2}$

$a_n=\frac{2n+n^2}{2n^2}=\frac{\frac{2}{n}+1}{2}\to\frac{1}{2}$


irena
postów: 2636
2015-01-08 11:45:11


$a_n=\frac{1+3+5+...+2n-1}{n(n+1)}$

$1+3+5+...+2n-1=\frac{1+2n-1}{2}\cdot n=n^2$

$a_n=\frac{n^2}{n^2+n}=\frac{1}{1+\frac{1}{n}}\to1$


irena
postów: 2636
2015-01-08 11:47:28



$a_n=\frac{1+2+3+...+n}{n^2+2n+5}$

$1+2+3+...+n=\frac{1+n}{2}\cdot n=\frac{n(n+1)}{2}$

$a_n=\frac{n^2+n}{2n^2+4n+10}=\frac{1+\frac{1}{n}}{2+\frac{4}{n}+\frac{10}{n^2}}\to\frac{1}{2}$


irena
postów: 2636
2015-01-08 11:51:09



$a_n=3n-\sqrt{9n^2+6n-5}=\frac{9n^2-9n^2-6n+5}{3n+\sqrt{9n^2+6n-5}}=$

$=\frac{-6n+5}{3n+n\sqrt{9+\frac{6}{n}-\frac{5}{n^2}}}=$

$=\frac{-6+\frac{5}{n}}{3+\sqrt{9+\frac{6}{n}-\frac{5}{n^2}}}\to\frac{-6}{3+3}=-1$


irena
postów: 2636
2015-01-08 11:54:31



$a_n=\sqrt{n^2-1}-\sqrt{n^2-2}=\frac{n^2-1-n^2+2}{\sqrt{n^2-1}+\sqrt{n^2-2}}=\frac{1}{n\sqrt{1-\frac{1}{n^2}}+n\sqrt{1-\frac{2}{n^2}}}=$

$=\frac{\frac{1}{n}}{\sqrt{1-\frac{1}{n^2}}+\sqrt{1-\frac{2}{n^2}}}\to\frac{0}{1+1}=0$


irena
postów: 2636
2015-01-08 11:58:09



strony: 1

Prawo do pisania przysługuje tylko zalogowanym użytkownikom. Zaloguj się lub zarejestruj

© 2019 Mariusz Śliwiński      o serwisie | kontakt   drukuj