Równania i nierówności, zadanie nr 606
ostatnie wiadomości | regulamin | latex
Autor | Zadanie / Rozwiązanie |
v8fun postów: 106 | ![]() Suma cyfr liczby trzycyfrowej wynosi 15.Jeśli zamienimy miejscami cyfrę setek i jedności, to otrzymamy liczbę o 396 większą.Znajdź tę liczbę,jeśli wiadomo, że cyfra środkowa jest średnią arytmetyczną cyfr skrajnych. Jeśli mógłby mi ktoś podsunąć równanie ![]() |
jarah postów: 448 | ![]() x - cyfra setek y - cyfra dziesiątek z- cyfra jedności $\left\{\begin{matrix} x+y+z=15 \\ 100x+10y+z=100z+10y+x+396 \\y=\frac{x+z}{2}\end{matrix}\right.$ i rozwiązanie 357. |
v8fun postów: 106 | ![]() Prosiłbym jednak o rozwinięcie rozwiązania,nie mogę do tego dojść ![]() |
strony: 1 |
Prawo do pisania przysługuje tylko zalogowanym użytkownikom. Zaloguj się lub zarejestruj