Kombinatoryka, zadanie nr 6334
ostatnie wiadomości | regulamin | latex
Autor | Zadanie / Rozwiązanie |
penelopa38 postów: 18 | 2020-05-20 09:40:57 |
pm12 postów: 493 | 2020-05-22 10:58:17 1. ${8 \choose 2}$ = $\frac{8!}{2!\cdot(8-2)!}$ = $\frac{8!}{2!\cdot6!}$ = $\frac{1\cdot2\cdot3\cdot4\cdot5\cdot6\cdot7\cdot8}{(1\cdot2)\cdot(1\cdot2\cdot3\cdot4\cdot5\cdot6)}$ = $\frac{7\cdot8}{1\cdot2}$ = 28 |
pm12 postów: 493 | 2020-05-22 11:00:57 ${10 \choose 2}$ = $\frac{10!}{2!\cdot(10-2)!}$ = $\frac{10!}{2!\cdot8!}$ = $\frac{1\cdot2\cdot3\cdot4\cdot5\cdot6\cdot7\cdot8\cdot9\cdot10}{(1\cdot2)\cdot(1\cdot2\cdot3\cdot4\cdot5\cdot6\cdot7\cdot8)}$ = $\frac{9\cdot10}{1\cdot2}$ = 45 |
pm12 postów: 493 | 2020-05-22 11:05:44 ${12 \choose 10}$ = $\frac{12!}{10!\cdot(12-10)!}$ = $\frac{12!}{10!\cdot2!}$ = $\frac{1\cdot2\cdot3\cdot4\cdot5\cdot6\cdot7\cdot8\cdot9\cdot10\cdot11\cdot12}{(1\cdot2\cdot3\cdot4\cdot5\cdot6\cdot7\cdot8\cdot9\cdot10)\cdot(1\cdot2)}$ = $\frac{11\cdot12}{1\cdot2}$ = 66 |
pm12 postów: 493 | 2020-05-22 11:09:25 ${197 \choose 1}$ = $\frac{197!}{1!\cdot(197-1)!}$ = $\frac{197!}{1!\cdot196!!}$ = $\frac{196!\cdot197}{1\cdot196!}$ = 197 |
pm12 postów: 493 | 2020-05-22 11:11:55 ${37 \choose 36}$ = $\frac{37!}{36!\cdot(37-36)!}$ = $\frac{37!}{36!\cdot1!}$ = $\frac{36!\cdot37}{36!\cdot1}$ = 37 |
pm12 postów: 493 | 2020-05-22 11:16:35 2. a) ${24 \choose 20}$ = $\frac{24!}{20!\cdot(24-20)!}$ = $\frac{24!}{20!\cdot4!}$ = $\frac{20!\cdot21\cdot22\cdot23\cdot24}{20!\cdot24}$ = $21\cdot22\cdot23$ = 10626 |
strony: 1 |
Prawo do pisania przysługuje tylko zalogowanym użytkownikom. Zaloguj się lub zarejestruj