Liczby naturalne, zadanie nr 1016
ostatnie wiadomości | regulamin | latex
Autor | Zadanie / Rozwiązanie |
angela postów: 131 | ![]() Na bokach trójkąta prostokątnego zbudowano trójkąty prostokątne równoramienne. Uzasadnij że suma pól trójkątów zbudowanych na przyprostokątnych jest równa polu trójkąta zbudowanego na przeciwprostokatnej |
agus postów: 2386 | ![]() Niech wyjściowy trójkąt ma przyprostokątne a, b i przeciwprostokątną c. Z tw. Pitagorasa: $ a^{2}+ b^{2}= c^{2}$ Zatem: $\frac{1}{2}a^{2}+\frac{1}{2}b^{2}=\frac{1}{2}c^{2}$, czyli suma pól trójkątów prostokątnych równoramiennych zbudowanych na przyprostokątnych jest równa polu trójkąta prostokątnego równoramiennego zbudowanego na przeciwprostokątnej |
strony: 1 |
Prawo do pisania przysługuje tylko zalogowanym użytkownikom. Zaloguj się lub zarejestruj