logowanie

matematyka » forum » forum zadaniowe - uczelnie wyższe » zadanie

Analiza matematyczna, zadanie nr 108

ostatnie wiadomości  |  regulamin  |  latex

AutorZadanie / Rozwiązanie

raczka1991
postów: 34
2011-03-14 21:52:30




irena
postów: 2636
2011-03-16 21:37:35

$(xlnx)'=lnx+x\cdot\frac{1}{x}=lnx+1$
$\lim_{x \to 0}\frac{xlnx}{\sqrt{x}}}=$
$=(H)\lim_{x \to 0}\frac{lnx+1}{\frac{1}{2\sqrt{x}}}=\lim_{x \to 0}2\sqrt{x}(lnx+1)=(2\cdot0\cdot1)=0$


raczka1991
postów: 34
2011-03-18 00:06:38



strony: 1

Prawo do pisania przysługuje tylko zalogowanym użytkownikom. Zaloguj się lub zarejestruj

© 2019 Mariusz Śliwiński      o serwisie | kontakt   drukuj