Analiza matematyczna, zadanie nr 1538
ostatnie wiadomości | regulamin | latex
Autor | Zadanie / Rozwiązanie |
kar_o postów: 52 | 2013-09-23 12:56:49 a)$\int_{}^{} \frac{(x^2-1)^3}{x}dx;$ b)$\int_{}^{} x^5 lnxdx$ c)$\int_{}^{} \frac{sinx}{1+cos^2x}dx$ d)$\int_{}^{} \frac{9x-3}{x^2+x-2}dx$ |
abcdefgh postów: 1255 | 2013-09-23 13:06:50 $\int \frac{x^{6}-3x^4+3x^2-1}{x}dx=\int x^5dx-3\int x^3 + 3\int x -\int dx =\frac{x^{6}}{6}-3\frac{x^{4}}{4}+3\frac{x^2}{2}-1+C$ |
kar_o postów: 52 | 2013-09-23 13:09:55 |
abcdefgh postów: 1255 | 2013-09-23 13:17:44 $\int x^5 lnxdx=\left[\begin{array} f(x)=x^5 \ g'(x)=lnx \\ f'(x)=5x^{4} \ g(x)=\frac{1}{x} \end{matrix}\right.]=x^4-5\int x^3dx= x^4-5*\frac{x^4}{4} +c $ Wiadomość była modyfikowana 2013-09-23 13:57:06 przez abcdefgh |
abcdefgh postów: 1255 | 2013-09-23 13:34:36 $\int_{}^{} \frac{sinx}{1+cos^2x}dx=|\begin{array} t=tg\frac{x}{2} \\ dx=\frac{2}{1+t^2} \\ sinx=\frac{2t}{1+t^2} \\ cosx=\frac{1-t^2}{1+t^2} \end{array}|=\int \frac{\frac{2t}{1+t^2}}{1+\frac{1-t^2}{1+t^2}}*\frac{2}{1+t^2}dt=\int \frac{\frac{2t}{1+t^2}}{\frac{2}{1+t^2}}*\frac{2}{1+t^2}dt=\int \frac{2t}{1+t^2}dt=\begin{array} w=1+t^2 \\ dw=2t dt \\ dt=\frac{1}{2t}\end{array}=\int \frac{2t}{w}*\frac{1}{2t}dw=\int \frac{1}{w}dw=ln|w|+C=ln|\frac{1}{2tg\frac{x}{2}}|+c$ |
abcdefgh postów: 1255 | 2013-09-23 13:52:40 $\int_{}^{} \frac{9x-3}{x^2+x-2}dx=\int \frac{5}{x+2}dx + \int \frac{4}{x-1}dx=dln|x+2|+4ln|x-1| +C$ |
strony: 1 |
Prawo do pisania przysługuje tylko zalogowanym użytkownikom. Zaloguj się lub zarejestruj