logowanie

matematyka » forum » forum zadaniowe - uczelnie wyższe » zadanie

Analiza matematyczna, zadanie nr 1640

ostatnie wiadomości  |  regulamin  |  latex

AutorZadanie / Rozwiązanie

lazy2394
postów: 50
2013-11-02 17:04:14



Wiadomość była modyfikowana 2013-11-03 09:28:55 przez lazy2394

mimi
postów: 171
2013-11-02 19:58:21

a.) $\sum_{i=1}^{1} \frac{1}{(2i - 1)(2i + 1)} = \frac{1}{3} = \frac{1}{2\cdot 1 + 1}$
$\sum_{i=1}^{n+1} \frac{1}{(2i - 1)(2i + 1)} = \frac{1}{(2(n+1) - 1)(2(n+1) + 1)} + \sum_{i=1}^{n} \frac{1}{(2i - 1)(2i + 1)} = \frac{n}{2n + 1} + \frac{1}{(2n + 1)(2n + 3)} = \frac{n(2n+3) + 1}{(2n + 1)(2n + 3)} = $
$ = \frac{2n^{2} + 3n + 1}{(2n + 1)(2n + 3)} = \frac{2n^{2} + 2n + n + 1}{(2n + 1)(2n + 3)} = \frac{(2n + 1)(n + 1)}{(2n+1)(2n+3)} = \frac{n + 1}{2(n+1) + 1}$


tumor
postów: 8070
2014-06-27 12:24:37



strony: 1

Prawo do pisania przysługuje tylko zalogowanym użytkownikom. Zaloguj się lub zarejestruj

© 2019 Mariusz Śliwiński      o serwisie | kontakt   drukuj