Algebra, zadanie nr 1969
ostatnie wiadomości | regulamin | latex
Autor | Zadanie / Rozwiązanie |
thorn postów: 1 | 2014-01-25 17:01:51 |
abcdefgh postów: 1255 | 2014-01-25 20:24:50 1. $cos2x=cos^2-sin^2x$ $cos2x=cos^2x-1+cos^2x$ $\frac{1}{2}(cos2x+1)=cos^2x$ $\int \frac{1}{2}(cos2x+1)dx=\frac{1}{2} \int cos2xdx+\frac{1}{2}\int 1dx=\frac{1}{4}sin2x+\frac{1}{2} x+c $ 2. $\int xe^{2}dx=\begin{bmatrix} f(x)=x \ g'(x)=e^{2x} \\ f'(x)=1 \ g(x)=\frac{1}{2}e^{2x} \end{bmatrix}=\frac{x}{2}e^{2x}-\frac{1}{2} \int e^{2x}dx= \frac{x}{2}e^{2x}-\frac{1}{4}e^{2x}+c$ |
abcdefgh postów: 1255 | 2014-01-25 20:38:13 $\int x^{2}e^{2} dx=e^{2} \int x^2dx=e^{2}*\frac{x^3}{3}+c$ $\int x sin^{2}x dx=\begin{bmatrix} f(x)=x \ g'(x)=sin^2x \\ f'(x)=1 \ g(x)=\frac{-1}{2}cos2x \end{bmatrix}=\frac{-x}{2}cos1x+\frac{1}{2}\int cos2xdx=\frac{-x}{2}cos1x+\frac{1}{4}sin2x+c$ $\int ln x dx=\begin{bmatrix} f(x)=lnx \ g'(x)=1 \\ f'(x)=\frac{1}{x} \ g(x)=x \end{bmatrix}=xlnx-\int 1dx=xlnx-x$ |
abcdefgh postów: 1255 | 2014-01-25 20:42:12 $\int x ln x dx=\begin{bmatrix} f(x)=x \ g'(x)=lnx \\ f'(x)=1 \ g(x)=xlnx-x \end{bmatrix}=x^2lnx-x^2-\int xlnx dx + \int x dx=$ $x^2lnx-x^2-\int xlnx dx+\frac{x^2}{2}$ $\int x ln x dx=x^2lnx-x^2-\int xlnx dx+\frac{x^2}{2}$ $2\int x ln x dx=x^2lnx-x^2-\frac{x^2}{2}$ $\int x ln x dx=\frac{1}{2}(x^2lnx-x^2-\frac{x^2}{2})$ |
abcdefgh postów: 1255 | 2014-01-25 20:46:44 $\int ln^{2}x dx =\begin{bmatrix} f(x)=ln^2x \ g'(x)=1 \\ f'(x)=\frac{2lnx}{x} \ g(x)=x \end{bmatrix}=xln^2x-2\int lnxdx=xln^2x-2(xlnx-x)+c$ |
strony: 1 |
Prawo do pisania przysługuje tylko zalogowanym użytkownikom. Zaloguj się lub zarejestruj