Inne, zadanie nr 1983
ostatnie wiadomości | regulamin | latex
Autor | Zadanie / Rozwiązanie |
trolololo postów: 6 | 2014-01-28 16:18:40 Wiadomość była modyfikowana 2014-01-28 17:14:53 przez trolololo |
abcdefgh postów: 1255 | 2014-01-28 17:22:50 $a)F(x,y)=3xy-2y^2+7$ $\frac{df}{dx}(x,y)=3y$ $\frac{df}{dy}(x,y)=3x-4y$ b) $f(x,y)=3x^3y^2-2xy^4+5y-\frac{2}{x}$ $\frac{df}{dx}(x,y)=9x^2y^2-2y^4+\frac{2}{x^2}$ $\frac{df}{dy}(x,y)=6yx^3-8xy^3+5$ $c)f(x,y)=\frac{x-y}{x+y}$ $\frac{df}{dx}(x,y)=\frac{1-0-(x-y)*(1+0)}{(x+y)^2}=\frac{1-x+y}{(x+y)^2}$ $\frac{df}{dy}(x,y)=\frac{0-1-(x-y)*(0+1)}{(x+y)^2}=\frac{-1-x+y}{(x+y)^2}$ $d)f(x,y)=ln(x^2+y^2) $ $\frac{df}{dx}(x,y)=\frac{1}{x^2+y^2}*2x$ $\frac{df}{dy}(x,y)=\frac{1}{x^2+y^2}*2y$ $f(x,y)=y^2 * cos(2x-y) $ $\frac{df}{dx}(x,y)=y^2*(-sin(2x-y)*2)$ $\frac{df}{dy}(x,y)=2y*cos(2x-y)+y^2*sin(2x-y)*(-1)$ $f)f(x,y,z)=x^2*y^5*z^9+16 $ $\frac{df}{dx}(x,y,z)=2xy^5z^9$ $\frac{df}{dy}(x,y,z)=5y^4x^2z^9$ $\frac{df}{dz}(x,y,z)=9z^8y^5x^2$ |
trolololo postów: 6 | 2014-01-28 18:33:36 |
strony: 1 |
Prawo do pisania przysługuje tylko zalogowanym użytkownikom. Zaloguj się lub zarejestruj