logowanie

matematyka » forum » forum zadaniowe - uczelnie wyższe » zadanie

Algebra, zadanie nr 2855

ostatnie wiadomości  |  regulamin  |  latex

AutorZadanie / Rozwiązanie

puszlord
postów: 1
2014-11-29 15:05:40

Wyznacz na podstawie definicji pochodne funkcji w podanych punktach:
a) f(x)=cos2x, $x_{0}$=$\frac{\pi}{2}$
b) f(x)=$\frac{1}{\sqrt{1-x}}$, $x_{0}$=-2



abcdefgh
postów: 1255
2014-11-30 20:46:23

a)
$\lim_{h \to 0} \frac{cos(\pi+2h)-cos(\pi)}{h}=\lim_{h \to 0} \frac{cos(\pi+2h)+1}{h}=[\frac{0}{0}]=lim_{h \to 0} \frac{-sin(\pi+2h)*2}{1}=0$

b)
$\lim_{h \to 0} \frac{\frac{1}{\sqrt{1-(-2+h)}}-\frac{1}{\sqrt{1+2}}}{h}= \lim_{h \to 0} \frac{\frac{1}{\sqrt{3-h}}-\frac{1}{\sqrt{3}}}{h}=[\frac{0}{0}]=\lim_{h \to 0} \frac{\frac{1}{2}\frac{1}{(3-h)^{3/2}}}{1}==\frac{1}{6\sqrt{3}}$

strony: 1

Prawo do pisania przysługuje tylko zalogowanym użytkownikom. Zaloguj się lub zarejestruj

© 2019 Mariusz Śliwiński      o serwisie | kontakt   drukuj