Analiza matematyczna, zadanie nr 5446
ostatnie wiadomości | regulamin | latex
Autor | Zadanie / Rozwiązanie |
geometria postów: 863 | ![]() Znalezc jedno rozwiazanie rownania $x''(t)+4x(t)=5e^{t}$. Jest to rownanie drugiego rzedu liniowe niejednorodne o stalych wspolczynnikach. Rozwiazanie ogolne tego rownania to $x(t)=c_{1}cos(2t)+c_{2}sin(2t)+e^{t}, c_{1}, c_{2} \in R$ A jak ja mam znalezc jedno rozwiazanie tego rownania to jakie ono ma byc? Ogolne, szczegolne czy jakie? |
tumor postów: 8070 | ![]() Mam wrażenie, że jedno rozwiązanie to pojedyncze rozwiązanie szczególne, przy tym na oko jest takim $e^t$. |
strony: 1 |
Prawo do pisania przysługuje tylko zalogowanym użytkownikom. Zaloguj się lub zarejestruj