logowanie

matematyka » forum » forum zadaniowe - uczelnie wyższe » zadanie

Teoria liczb, zadanie nr 5692

ostatnie wiadomości  |  regulamin  |  latex

AutorZadanie / Rozwiązanie

geometria
postów: 865
2018-02-20 10:33:32

$a,b,c\in N$
(13a-2)mod c - ((13b-2)mod c)
(13a-2-13b+2)mod c
Czy mozna tak zrobic? Wymaga to jakis zalozen?


tumor
postów: 8070
2018-02-20 12:25:28

Wymaga.
$3mod8-5mod8 =-2$
natomiast $(3-5)mod8=6$



geometria
postów: 865
2018-02-20 16:16:09

1. $3mod9-2mod9=1$
$(3-2)mod9=1$
2. $7mod8-3mod8=4$
$(7-3)mod8=4$
3. $12mod5-10mod5=2-0=2$
$(12-10)mod5=2$

Najprawdopodobniej pierwszy argument musi byc wiekszy badz rowny od drugiego.

Zatem aby wyjsciowe wyrazenie zachodzilo $13a-2\ge 13b-2$
Czyli $a\ge b$.
Dobrze?


tumor
postów: 8070
2018-02-20 16:42:58



Wiadomość była modyfikowana 2018-02-20 16:49:36 przez tumor

geometria
postów: 865
2018-02-22 10:56:32

Niech
$a, c>0$
$r_{a}=a$ mod $c$ oraz $r_{b}=b$ mod $c$
$M\ge 0$ i $M=r_{a}-r_{b}$.
jesli $r_{a}<r_{b}$, to $r_{a}-r_{b}<0$
Skoro $M$ jest nieujemne, to czy moge napisac, ze $M=(a-b)$ mod $c$ ?

Wiadomość była modyfikowana 2018-02-22 20:48:57 przez geometria
strony: 1

Prawo do pisania przysługuje tylko zalogowanym użytkownikom. Zaloguj się lub zarejestruj

© 2019 Mariusz Śliwiński      o serwisie | kontakt   drukuj