Analiza matematyczna, zadanie nr 891
ostatnie wiadomości | regulamin | latex
Autor | Zadanie / Rozwiązanie |
deptixx postów: 6 | ![]() Wyznacz pochodną funkcji f(x) f(x)=\sqrt[3]{x}\div 1 - \sqrt[3]{x} |
naimad21 postów: 380 | ![]() Napisz to czytelniej, to coś popróbujemy ;) Po prawej stronie na górze masz takie coś jak LaTeX, wejdź w to i poczytaj ;) |
deptixx postów: 6 | ![]() f(x)=$\sqrt[3]{x}\div 1-\sqrt[3]{x}$ |
tumor postów: 8070 | ![]() A co tu znaczy symbol $\div$? |
naimad21 postów: 380 | ![]() $f(x)=\frac{x^{\frac{1}{3}}}{1-x^{\frac{1}{3}}}$ $f'(x)=\frac{\frac{1}{3}x^{-\frac{2}{3}}-\frac{1}{3}x^{-\frac{1}{3}}+\frac{1}{3}x^{-\frac{1}{3}}}{(1-x^{\frac{1}{3}})^{2}}=\frac{\frac{1}{3}x^{-\frac{2}{3}}}{(1-x^{\frac{1}{3}})^{2}}=\frac{1}{3x^{\frac{2}{3}}(1-x^{\frac{1}{3}})^{2}}$ NIE gwarantuje, że dobrze zrobiłem, pewnie za chwile ktoś sprawdzi i się wypowie ;), mianownik można jeszcze wymnożyć i uprościć, ale z tym chyba sobie już poradzisz ;) |
strony: 1 |
Prawo do pisania przysługuje tylko zalogowanym użytkownikom. Zaloguj się lub zarejestruj