logowanie

matematyka » forum » matematyka » temat

Dzielenie za pomoc膮 permutacji.

ostatnie wiadomo艣ci  |  regulamin  |  latex

AutorWiadomo艣膰

Szymon Konieczny
post贸w: 11670
2023-06-21 15:07:34

$\frac{W_{1}+W_{5}x^{4}+W_{12}x^{11}}{(x+a)(x+b)(x+c)}=$

$W_{1}per(a,b,c)^{0}$
$-W_{1}per(a,b,c)^{1}+W_{2}per(a,b,c)^{0}$
$-W_{1}per(a,b,c)^{2}+W_{2}per(a,b,c)^{1}-W_{3}per(a,b,c)^{0}$
$+W_{1}per(a,b,c)^{3}-W_{2}per(a,b,c)^{2}+W_{3}per(a,b,c)^{1}-W_{3}per(a,b,c)^{0}$
$W_{1}per(a,b,c)^{4}-W_{4}per(a,b,c)^{0}$
$W_{1}per(a,b,c)^{5}-W_{4}per(a,b,c)^{1}$
$-W_{1}per(a,b,c)^{6}+W_{4}per(a,b,c)^{2}$
$-W_{1}per(a,b,c)^{7}+W_{4}per(a,b,c)^{3}$
$+W_{1}per(a,b,c)^{8}-W_{4}per(a,b,c)^{4}$
$\frac{+W_{1}per(a,b,c)^{9}-W_{4}per(a,b,c)^{5}}{(x+a)}$
$\frac{-W_{1}per(a,b,c)^{10}+W_{4}per(a,b,c)^{6}}{(x+a)(x+b)}$
$\frac{-W_{1}(c)^{11}+W_{4}(c)^{6}-W_{12}c^{0}}{(x+a)(x+b)(x+c)}$


Wiadomo艣膰 by艂a modyfikowana 2023-06-21 15:09:14 przez Szymon Konieczny

Szymon Konieczny
post贸w: 11670
2023-06-21 15:10:06

Pocz膮tki, teraz podstawiamy wz贸r, na permutacj臋.


Szymon Konieczny
post贸w: 11670
2023-06-21 15:20:04

$\frac{W_{1}+W_{5}x^{4}+W_{12}x^{11}}{(x+a)(x+b)(x+c)}=$

$W_{1}per(a,b,c)^{0}$
$-W_{1}per(a,b,c)^{1}$
$-W_{1}per(a,b,c)^{2}$
$+W_{1}per(a,b,c)^{3}$
$W_{1}per(a,b,c)^{4}-W_{4}per(a,b,c)^{0}$
$W_{1}per(a,b,c)^{5}-W_{4}per(a,b,c)^{1}$
$-W_{1}per(a,b,c)^{6}+W_{4}per(a,b,c)^{2}$
$-W_{1}per(a,b,c)^{7}+W_{4}per(a,b,c)^{3}$
$+W_{1}per(a,b,c)^{8}-W_{4}per(a,b,c)^{4}$
$\frac{+W_{1}per(a,b,c)^{9}-W_{4}per(a,b,c)^{5}}{(x+a)}$
$\frac{-W_{1}per(a,b,c)^{10}+W_{4}per(a,b,c)^{6}}{(x+a)(x+b)}$
$\frac{-W_{1}(c)^{11}+W_{4}(c)^{6}-W_{12}(c)^{0}}{(x+a)(x+b)(x+c)}$


Wiadomo艣膰 by艂a modyfikowana 2023-06-21 15:23:57 przez Szymon Konieczny

Szymon Konieczny
post贸w: 11670
2023-06-21 15:23:06

Za du偶o jak na raz, nie licz臋.


Szymon Konieczny
post贸w: 11670
2023-06-21 15:32:30

$per(a,bc)^{3}=(a+b+c)(abc)$
$Per(a,b,c)^{4}=(a+b+c) \cdot Per(a,b,c)^{3}$
$Per(a,b,c)^{5}=(a+b+c) \cdot Per(a,b,c)^{4}$
$Per(a,b,c)^{6}=(abc)(per(a,b,c)^{3})$
$Per(a,b,c)^{7}=(a+b+c) \cdot Per(a,b,c)^{6}$
$Per(a,b,c)^{8}=(a+b+c) \cdot Per(a,b,c)^{7}$
$Per(a,b,c)^{9}=(abc)(per(a,b,c)^{6})$
$Per(a,b,c)^{10}=(a+b+c) \cdot Per(a,b,c)^{9}$
$Per(a,b,c)^{11}=(a+b+c) \cdot per(a,b,c)^{10}$


Szymon Konieczny
post贸w: 11670
2023-06-21 15:44:41

Ol艣ni艂o mnie. To na tym polega probalistyka, na wklejaniu wzoru, do wzoru.


Szymon Konieczny
post贸w: 11670
2023-06-21 16:14:57

Wychodzi:
$W_{1} \cdot (+Per(a,b,c)^{0}+Per(a,b,c)^{1}-Per(a,b,c)^{2}-Per(a,b,c)^{3}+Per(a,b,c)^{4}+Per(a,b,c)^{5}-Per(a,b,c)^{6}-Per(a,b,c)^{7}+Per(a,b,c)^{8})+$
$W_{4} \cdot (-Per(a,b,c)^{0}-Per(a,b,c){1}+Per(a,b,c)^{2}+Per(a,b,c)^{3}-Per(a,b,c)^{4})+$
$\frac{+W_{1}per(a,b,c)^{9}-W_{4}per(a,b,c)^{5}}{(x+a)}$
$\frac{-W_{1}per(a,b,c)^{10}+W_{4}per(a,b,c)^{6}}{(x+a)(x+b)}$
$\frac{-W_{1}(c)^{11}+W_{4}(c)^{6}-W_{12}c^{0}}{(x+a)(x+b)(x+c)}$


Wiadomo艣膰 by艂a modyfikowana 2023-06-21 16:17:04 przez Szymon Konieczny

Szymon Konieczny
post贸w: 11670
2023-06-21 16:21:31

O ja przeros艂a, mnie moja wiedza, na dzisiaj koniec.


Szymon Konieczny
post贸w: 11670
2023-06-21 16:33:04

Nikt nie zawi贸d艂. |Po prostu tak mia艂o by膰. Wiecie jak膮 tu widzia艂em piecz臋膰. Nikt, by nie podo艂a艂.


Szymon Konieczny
post贸w: 11670
2023-06-21 16:40:41

Jak kto艣 zawi贸d艂, to ja. Mia艂em do艣膰 permutacji i zawiesi艂em obliczenia. A mog艂em co艣 zdzia艂a膰, szybciej

strony: 1 ... 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 ... 1011

Prawo do pisania przys艂uguje tylko zalogowanym u偶ytkownikom. Zaloguj si臋 lub zarejestruj

© 2019 Mariusz iwi駍ki      o serwisie | kontakt   drukuj