Matematyka dyskretna, zadanie nr 4503
ostatnie wiadomości | regulamin | latex
Autor | Zadanie / Rozwiązanie |
geometria postów: 865 | 2016-04-27 16:54:18 Rozpatrujemy zbior $R\times R$ czesciowo uporzadkowany przez relacje: $<$x,y$>$$\le$ $<$u,v$> $$\iff$ $x\le u \wedge y\le v$. Zaznaczyc w ukladzie wspolrzednych Oxy zbior tych par, ktore sa porownywalne z para $<$1,3$>$ i nie sa porownywalne z para $<$3,1$>$. Z tymi elementami porownywalnymi to nie do konca sobie radze. Jak odczytac te relacje? Czy za x moge podstawic 1 a za y 3 do tej relacji czy mam to podstwaic za u i v? |
tumor postów: 8070 | 2016-04-27 17:04:15 |
geometria postów: 865 | 2016-04-28 19:09:10 Dla takiej samej relacji jak powyzej mamy: A={$<$x,y$>$: x=$y^{2}$} a) wskazac 3 elementy minimalne w zbiorze A wzgledem czesciowego porzadku $\le$ b)wskazac 3-elementowy lancuch elementow w zbiorze A wzgledem czesciowego porzadku $\le$ |
tumor postów: 8070 | 2016-04-28 20:31:34 Wiadomość była modyfikowana 2016-04-28 20:32:36 przez tumor |
geometria postów: 865 | 2016-04-29 09:45:54 Wyznacz kres gorny zbioru $B=${$<$x,y$>$: $x^{2}+y^{2}=1$} Para (c,d) bedzie kresem gornym zbioru B, gdy wszystkie pary (x,y) nalezace do tego zbioru B beda w relacji z para (c,d), czyli (x,y)$\le$(c,d) i dalej z okreslenia relacji mamy: x$\le$c $\wedge$y$\le$d. Ale nie wiem jak wyznaczyc ta pare. ( i te elementy minimalne wczesniej rowniez) |
tumor postów: 8070 | 2016-04-29 10:57:15 |
geometria postów: 865 | 2016-04-29 18:18:00 Czyli te wszystkie pary, ktore sa ograniczeniami gornymi (badz dolnymi) musza byc w relacji z para (x,y) w taki sposob w jaki jest ona zdefiniowana. |
geometria postów: 865 | 2016-04-29 21:17:05 Ale nie musza one nalezec do tego zbioru, ktory chcemy ograniczac. |
tumor postów: 8070 | 2016-05-02 13:31:22 |
geometria postów: 865 | 2016-05-02 14:39:30 Wroce jeszcze do wyznaczania elementow minimalnych (w ogole elementow wyroznionych), bo chce to dobrze zrozumiec. W tym zbiorze A={(x,y): $x=y^{2}$} elementy minimalne sa postaci ($a^{2}, a$), gdzie a<0, czyli np. (1,-1), (4,-2), (9,-3), (16,-4), ($\frac{1}{4}$,$-$$\frac{1}{2}$), (2,$-\sqrt{2}$) itd. Chce przesledzic jeszcze raz ich wyznaczanie. Definicja elementu minimalnego: $\neg(\exists_{x}\in X)$x<a. Ponadto $x<a \iff x\le a \wedge x\neq a$ W zbiorze $R^{2}$ definicja ta przyjmuje postac: $\neg(\exists_{(x,y)}\in R^{2})$(x,y)<(a,b) Ponadto (x,y)<(a,b)$\iff (x,y)\le (a,b) \wedge (x,y)\neq (a,b)$ $(x,y)\neq (a,b)$$\iff x\neq a \vee y\neq b$ W naszym przypadku mamy punkty postaci ($y^{2},y$), wowczas element minimalny ma postac ($a^{2},a$). Zatem definicja wyglada tak: $\neg(\exists_{(y^{2},y)}\in R^{2})$($(y^{2},y)<(a^{2},a)$) $\iff$ $\neg(\exists_{(y^{2},y)}\in R^{2})$($(y^{2},y)\le (a^{2},a) \wedge (y^{2},y)\neq (a^{2},a)$) (czyli $y\neq a$) $(y^{2},y)\le (a^{2},a)$ i z okreslenia tej relacji $\le$ mamy: $y^{2}\le a^{2} \wedge y<a$ (bo $y\neq a$) I teraz definicja nam mowi, ze nie istnieje taka para $(y^{2},y)$, ktora jest mniejsza (rozumiem, ze miejsza w sensie relacji $\le$) od pary $(a^{2},a)$. No i jak a<0 to koniunkcja $y^{2}\le a^{2} \wedge y<a$ nie jest spelniona, bo $y^{2}\ge a^{2}$. Wowczas definicja elementu minimalnego jest spelniona, bo nie bedzie takiej pary $(y^{2},y)$ i wowczas elementy minimalne maja postac $(a^{2},a)$. Ale jak zauwazyc, ze ma to byc a<0? Czy te rozumowania sa poprawne i praktyczne przy wyznaczaniu tych elementow wyroznionych. |
strony: 1 23 |
Prawo do pisania przysługuje tylko zalogowanym użytkownikom. Zaloguj się lub zarejestruj