logowanie

matematyka » forum » matematyka » temat

Dzielenie za pomoc膮 permutacji.

ostatnie wiadomo艣ci  |  regulamin  |  latex

AutorWiadomo艣膰

Szymon Konieczny
post贸w: 11670
2022-08-31 12:45:56

Czasami tak bytwa, 偶e prze艂om przychodzi po latach.
Ju偶 trzy miesi膮ce, aktualizacji windowsa. CI膮gle ze wzgl臋du na nowy wz贸r, ci膮gle co艣 nowego wprowadzaj膮. To tu, to tam go zastosuj膮 i wszystki sprz臋t nie przetrwa. Najlepiej jak co艣 nie dzia艂a, zostawi膰 sprz臋t na dwa tygodnie, i zobi膮. Bo to masowe problemy.
Ju偶 m贸wi臋, wyjdzie nowy windows, bo nie poradz膮 sobie z akualizacj膮, ca艂ej platformy, do nowego wzoru.


Szymon Konieczny
post贸w: 11670
2022-08-31 12:46:23

$ per(a,b)^{1}=(a+b)$
$ per(a,b)^{2}=a \cdot per(a,b)^{1}+b^{2}$
$ per(a,b)^{3}=a \cdot per(a,b)^{2}+b^{3}$
$ per(a,b)^{4}=a \cdot per(a,b)^{3}+b^{4}$

$per(a,b,c)^{1}=(a+b+c)$
$per(a,b,c)^{2}=a \cdot per(a,b,c)^{1}+per(b,c)^{2}$
$per(a,b,c)^{3}=a \cdot per(a,b,c)^{2}+per(b,c)^{3}$
$per(a,b,c)^{4}=a \cdot per(a,b,c)^{3}+per(b,c)^{4}$

$per(a,b,c,d)^{1}=(a+b+c+d)$
$per(a,b,c,d)^{2}=a \cdot per(a,b,c,d)^{1}+b \cdot per(b,c,d)^{1}+per(c,d)^{2}$
$per(a,b,c,d)^{3}=a \cdot per(a,b,c,d)^{2}+b \cdot per(b,c,d)^{2}+per(c,d)^{3}$
$per(a,b,c,d)^{4}=a \cdot per(a,b,c,d)^{3}+b \cdot per(b,c,d)^{3}+per(c,d)^{4}$


Szymon Konieczny
post贸w: 11670
2022-08-31 12:47:59

Dok艂adna reszta, z dzielenia wielomian贸w.


Szymon Konieczny
post贸w: 11670
2022-08-31 13:00:46

$ \frac{W_{1}x^{n}+W_{2}x^{n-k}+...+W_{n}}{(x+a)(X+b)+...(x+n)}=$


$ W_{1}+$
$-W_{1} \cdot per^{1}+W_{2}$
$-W_{1} \cdot per^{2}+W_{2} \cdot per^{1}- W_{3}+$
$W_{1} \cdot per^{3}-W_{2} \cdot per^{2}+ W_{3} \cdot per^{1}-W_{4}$
$...+/-...$
$\frac{...+/-...}{(x+a)}$
$\frac{...+/-...}{(x+a)(x+b)}$
$...$
$\frac{+W_{1} \cdot n^{k}-W_{2} \cdot n^{k-1}...+/-...W_{n}}{(x+a)(x+b)...(x+n)}$

$ per(a,b)^{1}=(a+b)$
$ per(a,b)^{2}=a \cdot per(a,b)^{1}+b^{2}$
$ per(a,b)^{3}=a \cdot per(a,b)^{2}+b^{3}$
$ per(a,b)^{4}=a \cdot per(a,b)^{3}+b^{4}$

$per(a,b,c)^{1}=(a+b+c)$
$per(a,b,c)^{2}=a \cdot per(a,b,c)^{1}+per(b,c)^{2}$
$per(a,b,c)^{3}=a \cdot per(a,b,c)^{2}+per(b,c)^{3}$
$per(a,b,c)^{4}=a \cdot per(a,b,c)^{3}+per(b,c)^{4}$

$per(a,b,c,d)^{1}=(a+b+c+d)$
$per(a,b,c,d)^{2}=a \cdot per(a,b,c,d)^{1}+b \cdot per(b,c,d)^{1}+per(c,d)^{2}$
$per(a,b,c,d)^{3}=a \cdot per(a,b,c,d)^{2}+b \cdot per(b,c,d)^{2}+per(c,d)^{3}$
$per(a,b,c,d)^{4}=a \cdot per(a,b,c,d)^{3}+b \cdot per(b,c,d)^{3}+per(c,d)^{4}$

Wiadomo艣膰 by艂a modyfikowana 2022-09-03 15:03:58 przez Szymon Konieczny

Szymon Konieczny
post贸w: 11670
2022-08-31 13:40:19

Ja wiem jak to policzyc. Ty wiesz co z tym zrobi膰.


Szymon Konieczny
post贸w: 11670
2022-08-31 13:52:37

Tyle lat to liczy艂em i nagle prze艂om, ale jestem szcz臋艣liwy.


Szymon Konieczny
post贸w: 11670
2022-09-01 17:31:24



Wiadomo艣膰 by艂a modyfikowana 2022-09-02 17:23:10 przez Szymon Konieczny

Szymon Konieczny
post贸w: 11670
2022-09-02 17:22:57

Dzisiaj dzie艅 na zatwardzenie. Pomy艣l, 偶le si臋 czujesz, a by艂e艣 w toalecie?
Powiedzia艂a, 偶atwardzenie. On poszed艂 wr贸ci艂. I zakochany kundel. Tak dobrze si臋 poczu艂.

Wiadomo艣膰 by艂a modyfikowana 2022-09-02 17:38:22 przez Szymon Konieczny

Szymon Konieczny
post贸w: 11670
2022-09-03 15:04:20

$ \frac{W_{1}x^{n}+W_{2}x^{n-k}+...+W_{n}}{(x+a)(X+b)+...(x+n)}=$


$ W_{1}+$
$-W_{1} \cdot per^{1}+W_{2}$
$-W_{1} \cdot per^{2}+W_{2} \cdot per^{1}- W_{3}+$
$W_{1} \cdot per^{3}-W_{2} \cdot per^{2}+ W_{3} \cdot per^{1}-W_{4}$
$...+/-...$
$\frac{...+/-...}{(x+a)}$
$\frac{...+/-...}{(x+a)(x+b)}$
$...$
$\frac{+W_{1} \cdot n^{k}-W_{2} \cdot n^{k-1}...+/-...W_{n}}{(x+a)(x+b)...(x+n)}$

Tak jest bardziej rekurencyjnie, ale to to samo.

$ per(a,b)^{1}=(a+b)$
$ per(a,b)^{2}=a \cdot per(a,b)^{1}+b^{2}$
$ per(a,b)^{3}=a \cdot per(a,b)^{2}+b^{3}$
$ per(a,b)^{4}=a \cdot per(a,b)^{3}+b^{4}$

$per(a,b,c)^{1}=(a+b+c)$
$per(a,b,c)^{2}=a \cdot per(a,b,c)^{1}+per(b,c)^{2}$
$per(a,b,c)^{3}=a \cdot per(a,b,c)^{2}+per(b,c)^{3}$
$per(a,b,c)^{4}=a \cdot per(a,b,c)^{3}+per(b,c)^{4}$

$per(a,b,c,d)^{1}=(a+b+c+d)$
$per(a,b,c,d)^{2}=a \cdot per(a,b,c,d)^{1}+ per(b,c,d)^{2}$
$per(a,b,c,d)^{3}=a \cdot per(a,b,c,d)^{2}+ per(b,c,d)^{3}$
$per(a,b,c,d)^{4}=a \cdot per(a,b,c,d)^{3}+ per(b,c,d)^{4}$

Wiadomo艣膰 by艂a modyfikowana 2022-09-03 15:07:22 przez Szymon Konieczny

Szymon Konieczny
post贸w: 11670
2022-09-03 15:12:57

$ \frac{W_{1}x^{n}+W_{2}x^{n-k}+...+W_{n}}{(x+a)(X+b)+...(x+n)}=$


$ W_{1}+$
$-W_{1} \cdot per^{1}+W_{2}$
$-W_{1} \cdot per^{2}+W_{2} \cdot per^{1}- W_{3}+$
$W_{1} \cdot per^{3}-W_{2} \cdot per^{2}+ W_{3} \cdot per^{1}-W_{4}$
$...+/-...$
$\frac{...+/-...}{(x+a)}$
$\frac{...+/-...}{(x+a)(x+b)}$
$...$
$\frac{+W_{1} \cdot n^{k}-W_{2} \cdot n^{k-1}...+/-...W_{n}}{(x+a)(x+b)...(x+n)}$

Tak jest bardziej rekurencyjnie, ale to to samo.

$ per(c,d)^{1}=(c+d)$
$ per(c,d)^{2}=c \cdot per(c,d)^{1}+d^{2}$
$ per(c,d)^{3}=c \cdot per(c,d)^{2}+d^{3}$
$ per(c,d)^{4}=c \cdot per(c,d)^{3}+d^{4}$

$per(b,c,d)^{1}=(b+c+d)$
$per(b,c,d)^{2}=b \cdot per(b,c,d)^{1}+per(c,d)^{2}$
$per(b,c,d)^{3}=b \cdot per(b,c,d)^{2}+per(c,d)^{3}$
$per(b,c,d)^{4}=b \cdot per(b,c,d)^{3}+per(c,d)^{4}$

$per(a,b,c,d)^{1}=(a+b+c+d)$
$per(a,b,c,d)^{2}=a \cdot per(a,b,c,d)^{1}+ per(b,c,d)^{2}$
$per(a,b,c,d)^{3}=a \cdot per(a,b,c,d)^{2}+ per(b,c,d)^{3}$
$per(a,b,c,d)^{4}=a \cdot per(a,b,c,d)^{3}+ per(b,c,d)^{4}$

O teraz jest rekurencyjnie

Wiadomo艣膰 by艂a modyfikowana 2022-09-03 15:19:12 przez Szymon Konieczny
strony: 1 ... 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 ... 1011

Prawo do pisania przys艂uguje tylko zalogowanym u偶ytkownikom. Zaloguj si臋 lub zarejestruj

© 2019 Mariusz iwi駍ki      o serwisie | kontakt   drukuj